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Lecture No. 2 

Method of Weighted Residuals 

 The basic concept of the method of weighted residuals is to drive a residual error to 

zero through a set of orthogonality conditions. 

L (u) = p (x)  ϵ V 

S (u) = g (x)  ϵ  Γ 

 We let 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑𝛼𝑖𝜙𝑖(𝑥)

𝑁

𝑖=1

 

where 

   𝑢𝐵 = a function that satisfies all the boundary conditions 

   𝛼𝑖 = unknown coefficients which we must solve for 

   𝜙𝑖 = known functions from a complete sequence 
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 To satisfy admissibility we must satisfy functional continuity requirements,                   

i.e. 𝑢𝑎𝑝𝑝 must be sufficiently differentiable, in addition to satisfying all the boundary 

conditions: 

   𝑆(𝑢𝐵) = 𝑔(𝑥) 

   𝑆(𝜙𝑖) = 0     𝑖 = 1,… , 𝑁 

Therefore, the b.c.’s must be satisfied independently of the parameters 𝛼𝑖. 

 The problem with the method of weighted residuals is that it may be difficult to find 

functions which satisfy the above boundary conditions requirements. 

 We now define an interior domain “residual” or error: 

   Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝(𝑥) 
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 In addition we require the interior error to be orthogonal to a set of linearly independent 

weighting functions 

   < Ԑ𝐼 , 𝑤𝑗 > = 0     𝑗 = 1, 2, … ,𝑁 

 We note that wj must be linearly independent functions.  

 If uapp satisfies admissibility requirements, 𝜙i come from a complete sequence and wj 

are linearly independent, then the method will work.  

 

Solution Procedure 

 Construction of an approximate solution (follow the rules) 

 Reduction to a set of orthogonality conditions (orthogonality conditions on error) 

 Solve a set of simultaneous algebraic conditions. 
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Selection of Weighting Functions 

1. Collocation Method (Point Collocation) 

 Constrain the error only at a set of selected points. 

 We define the approximating function as (assuming uB = 0): 

𝑢𝑎𝑝𝑝 = ∑ 𝛼𝑘

𝑁

𝑘=1

𝜙𝑘 

  ⇒ 

Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝 = ∑ 𝛼𝑘

𝑁

𝑘=1

𝐿(𝜙𝑘) − 𝑝 

 The parameters 𝛼𝑘 are determined by enforcing the condition  Ԑ𝐼 = 0 at N points within the 

domain. Thus we select as the weighting function the dirac delta function:     

    𝑤𝑗 = 𝛿 (𝑥 – 𝑥𝑖)   
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 Substituting  

        < Ԑ𝐼 , 𝑤𝑗 > =  ∫ Ԑ𝐼(𝑥)𝑤𝑖(𝑥)𝑑𝑥
𝑥2

𝑥1
 

 

         = ∫ Ԑ𝐼(𝑥)𝛿(𝑥 − 𝑥𝑖)𝑑𝑥
𝑥2

𝑥1
 

 

        = Ԑ(𝑥𝑖) = 0  

 

 Therefore we set the residual error equal to zero at a set of collocation points. 
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Example of Point Collocation 

d.e.   𝐿(𝑢) − 𝑝 =
𝑑2𝑢

𝑑𝑥2 + 𝑢 + 𝑥 = 0 

b.c.’s  u = 0     at     x = 0 

    u = 0     at     x = 1 

 The approximate solution is defined as 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑𝛼𝑖𝜙𝑖(𝑥)

𝑁

𝑖=1

 

 However the boundary component is  uB ≡ 0 due to the homogeneous b.c.’s 

 

 Let’s approximate the function as: 

             𝑢𝑎𝑝𝑝 = 𝑥(1 − 𝑥)(𝛼1 + 𝛼2𝑥 + 𝛼3𝑥
2 + ⋯) 
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 This function for  𝑢𝑎𝑝𝑝 is infinitely differentiable and satisfies the b.c.’s for arbitrary αi 

and is therefore admissible. Furthermore the 𝜙i come from a complete sequence. 

 Note that:  

𝜙1 = x (1 – x) 

𝜙2 = x (1 – x) x 

𝜙3 = x (1 – x) x2 

 Let’s only use 2 terms in the approximation: 

 

    uapp = x (1 – x)(α1 + α2 x) 

 

 The error is (substituting uapp into the d.e.): 

   ԐI =L(uapp) – p  

ԐI = x + (– 2 + x – x2) α1 + (2 – 6x + x2 – x3) α2 
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 Now select 2 collocation points (since there are only 2 unknowns): 

𝑥1 =
1

4
  and   𝑥2 =

1

2
 

  

 

 Enforcing the constraint that the residual equals zero at the collocations points 

ԐI  (xi) = 0    i = 1, 2 

 Leads to the system of simultaneous equations 

[
 
 
 
 

 

29

16
−

35

64

7

4

7

8

 

]
 
 
 
 

[ 
𝛼1

𝛼1
 ] = [ 

1

4
1

2

 ] 
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 Solving the system of algebraic equations 

𝛼1 =
6

31
 and 𝛼2 =

40

217
 

 Thus 

𝑢𝑎𝑝𝑝 = 
𝑥(𝑥 − 1)

217
(42 + 40𝑥) 

Notes on Point Collocation 

 The computational effort required in the collocation procedure is minimal. 

 The procedure does not produce symmetrical coefficient matrices nor does it produce 

positive definite matrices. These are both desirable properties. We also note that 

symmetry has nothing to do with 𝜙i’s selected! 

 Setting the residual error to zero at discrete points does not mean that you have zero error 

at those points. The error will only go to zero as you take more and more functions in the 

approximating sequence, uapp. The residual is the difference between the differential 

operator operating on the approximating functions, which have been truncated, and the 

function p(x). 
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2. Least Squares 

 The least squares method is implemented by taking the inner product of the error by itself 

and requiring this quantity to be a minimum. Thus we define uapp as: 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑𝛼𝑖

𝑁

𝑖=1

𝜙𝑖 

 And define the residual error as: 

  ԐI = L (uapp) – p(x) 

 Now we let: 

𝐹 =< Ԑ𝐼 , Ԑ𝐼 > = < 𝐿 (𝑢𝑎𝑝𝑝) –  𝑝, 𝐿 (𝑢𝑎𝑝𝑝) –  𝑝 > 

 We note that any integrated measure of a function must be a quadratic (otherwise +’s and 

–‘s cancel). Therefore a measure of the error is the square of the error.  

 Our objective is to minimize F. Driving F to zero, will drive ԐI to zero. 

  

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  2          P a g e  11 | 28 

 

 Since the αi’s are the unknowns and F is a function of αi, we minimize F with respect to 

αi’s: 

𝜕𝐹

𝜕𝛼𝑗
= 0     𝑗 = 1, 2, …𝑁 

 Substituting for F 

𝜕

𝜕𝛼𝑗
∫ԑ𝐼

2𝑑𝑥 = 0 

          ⇒ 

∫2ԑ𝐼

𝜕ԑ𝐼

𝜕𝛼𝑗
𝑑𝑥 = 0 

⇒ 

< ԑ𝐼 ,
𝜕ԑ𝐼

𝜕𝛼𝑗
> = 0 
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 However we recall that: 

ԑ𝐼 = 𝐿(𝑢𝐵) − 𝑝 + ∑𝛼𝑖𝐿(𝜙𝑖)

𝑁

𝑖=1

 

 Assuming a linear operator 

𝜕ԑ𝐼

𝜕𝛼𝑗
= 𝐿(𝜙𝑗) 

 This results in: 

< ԑ𝐼 , 𝐿(𝜙𝑗) > = 0 

 Thus the weighting (test) functions are now the trial functions pushed through the 

differential operator. Therefore: 

           𝑤𝑗 = 𝐿(𝜙𝑗) 

 Substituting for ԑI : 

< 𝐿(𝑢𝐵) −  𝑝 + ∑𝛼𝑖𝐿(𝜙𝑖), 𝐿(𝜙𝑗) > = 0          𝑗 = 1,… , 𝑁

𝑁

𝑖=1

 

⇒ 
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∑𝛼𝑖 < 𝐿(𝜙𝑖), 𝐿(𝜙𝑗) > = −

𝑁

𝑖=1

< 𝐿(𝑢𝐵) −  𝑝, 𝐿(𝜙𝑗) > ,          𝑗 = 1,… , 𝑁 

 This leads to a set of simultaneous equations: 

 

∑𝛼𝑖𝑏𝑗𝑖 = − 𝑐𝑗           𝑗 = 1,… , 𝑁

𝑁

𝑖=1

 

 

where  𝑏𝑖𝑗 =< 𝐿(𝜙𝑖), 𝐿(𝜙𝑗) >     defines the coefficient matrix b.  

 Thus: 

𝒃𝛼 = −𝑐 

 Again we have developed a system of simultaneous algebraic equations from a 

differential equation. 
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Example of the Least Squares Method 

d.e.           

𝐿(𝑢) − 𝑝 =
𝑑2𝑢

𝑑𝑥2
+ 𝑢 + 𝑥 = 0 

𝐿(𝑢) =
𝑑2𝑢

𝑑𝑥2
+ 𝑢 

𝑝(𝑥) = −𝑥 

b.c.’s  

       𝑢 = 0 at 𝑥 = 0 and 𝑥 = 1 
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 Recall from the previous example, we set up an approximating function which was 

admissible (satisfied b.c.’s and had sufficient degree of functional continuity) and from a 

complete sequence (in this case we selected a sequence of polynomials): 

𝑢𝑎𝑝𝑝 = 𝑢𝐵 + ∑𝛼𝑖𝜙𝑖

2

𝑖=1

 

 

where 

𝑢𝐵 = 0 

𝜙1 = 𝑥(1 − 𝑥) 

𝜙2 = 𝑥2(1 − 𝑥) 

 

 Thus 

𝑢𝑎𝑝𝑝 = 𝛼1[𝑥(1 − 𝑥)] + 𝛼2[𝑥
2(1 − 𝑥)] 
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 Computing the components of the matrix 

 

𝑏11 = < 𝐿(𝜙1), 𝐿(𝜙1) > 

𝜙1 =  𝑥 − 𝑥2 

 

⇒ 
 

𝐿(𝜙1) =
𝑑2𝜙1

𝑑𝑥2
+ 𝜙1 = −2 + 𝑥 − 𝑥2 

 
⇒ 

 

𝐿(𝜙1)𝐿(𝜙1) =  4 − 4𝑥 + 5𝑥2 − 2𝑥3 + 𝑥4 

 

⇒ 

< 𝐿(𝜙1), 𝐿(𝜙1) > =  ∫(4 − 4𝑥 + 5𝑥2 − 2𝑥3 + 𝑥4)𝑑𝑥 = 3.36667

1

0
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 We proceed to find 𝑏22: 

𝑏22 = < 𝐿(𝜙1), 𝐿(𝜙1) > 

 

𝜙2 = 𝑥2 − 𝑥3 

 

𝐿(𝜙2) =
𝑑2𝜙2

𝑑𝑥2
+ 𝜙2 = 2 − 6𝑥 + 𝑥2 − 𝑥3 

 

𝐿(𝜙2)𝐿(𝜙2) = 4 − 24𝑥 + 40𝑥2 − 16𝑥3 + 13𝑥4 − 2𝑥5 + 𝑥6 

 

< 𝐿(𝜙2), 𝐿(𝜙2) > = ∫(4 − 24𝑥 + 40𝑥2 − 16𝑥3 + 13𝑥4 − 2𝑥5 + 𝑥6)

1

0

𝑑𝑥 = 3.7428 

 

 Similarly: 

< 𝐿(𝜙2), 𝐿(𝜙2) > = < 𝐿(𝜙2), 𝐿(𝜙1) > = 1.6833 
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 Computing the coefficients of the vector c, leads to the following system of equations: 

[
3.36667 1.68333
1.68333 3.7428

] [
𝛼1

𝛼2
] = [

0.91667
6.55000

] 

 

 The final step involves solving this system of equations. 
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Notes on the Least Squares Method 

 The matrix produced is always symmetrical regardless of the operator L or the functions 𝜙2. 

< 𝐿(𝜙𝑖), 𝐿(𝜙𝑗) > =< 𝐿(𝜙𝑗), 𝐿(𝜙𝑖) > 

⇒ 

𝑏𝑗𝑖 = 𝑏𝑖𝑗 

 Diagonal entries to the system matrix are always positive. Thus 

 < 𝐿(𝜙𝑖), 𝐿(𝜙𝑗) > ≥ 0   which leads to a positive definite matrix. 

 The least squares method involved too much computational effort. It is difficult to 

manipulate the wj’s which equal the 𝜙i’s pushed through operator L, this is both messy and 

tedious. 
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3. Galerkin Method 

 The Galerkin method consists of taking the inner product of the error and trial functions 

themselves. Thus: 

𝑤𝑗 = 𝜙𝑗 

⇒ 

〈Ԑ𝐼 , 𝜙𝑗〉 = 0 

 Hence 

< (𝐿(𝑢𝐵) − 𝑝), 𝜙𝑗 > +∑𝛼𝑖 < 𝐿(𝜙𝑖), 𝜙𝑗 > = 0          𝑗 = 1, 𝑁

𝑁

𝑖=1

 

⇒ 

∑𝑏𝑖𝑗𝛼𝑖 = 𝑐𝑗           𝑗 = 1, 𝑁

𝑁

𝑖=1

 

where  

𝑏𝑖𝑗 = < 𝐿(𝜙𝑖), 𝜙𝑗 > 
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 The Galerkin method is computationally much simpler than the least squares method. We 

no longer push 𝜙𝑗 through the operator L. 

 We note that the matrix produced is still symmetrical if the operator L is self adjoint. The 

operator L is self adjoint if in the transformation. 

< 𝐿(𝑢), 𝑣 > = < 𝑢,  𝐿∗(𝑣) > +… we have L = L*. Self adjointness of an operator is 

analogous to symmetry of a matrix. 

 We note that the matrix is still positive definite if the operator L is positive definite (and self 

adjoint). For a positive definite operator L(u) we have < L(u), u > > 0 for any u. We will 

discuss the above matters in more detail later. 
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Example of the Galerkin Method 

d.e     𝐿(𝑢) − 𝑝 =
𝑑2𝑢

𝑑𝑥2 + 𝑢 + 𝑥 = 0 

b.c.     𝑢 = 0   at  𝑥 = 0  and  𝑥 = 1 

 

 The approximating function: 

𝑢𝑎𝑝𝑝 = 𝛼1[𝑥(1 − 𝑥)] + 𝛼2[𝑥
2(1 − 𝑥)] 

    and  

𝑢𝐵 = 0     𝜙1 = 𝑥 − 𝑥2, 𝜙2 = 𝑥2 − 𝑥3  

 This allows us to compute the components of the system matrix bij 

𝑏11 = < 𝐿( 𝜙1), 𝜙2 > = ∫(−2 + 𝑥 − 𝑥2)(𝑥 − 𝑥2)𝑑𝑥

1

0

 

𝑏22 = < 𝐿( 𝜙2), 𝜙2 > = ∫(2 − 6𝑥 + 𝑥2 − 𝑥3)(𝑥2 − 𝑥3)𝑑𝑥

1

0
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𝑏12 = < 𝐿( 𝜙2), 𝜙1 > = ∫(2 − 6𝑥 + 𝑥2 − 𝑥3)(𝑥 − 𝑥2)𝑑𝑥

1

0

 

𝑏21 = < 𝐿( 𝜙1), 𝜙2 > = ∫(−2 + 𝑥 − 𝑥2)(𝑥2 − 𝑥3)𝑑𝑥

1

0

 

 Also computing the components cj : 

[

3

10

3

20
3

20

13

105

] [
𝛼1

𝛼2
] = [

1

12
1

20

] 

 We now solve this system of simultaneous equations. 

 Thus for the Galerkin’s method the test (weighting) functions are the same as the trial 

functions! 
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Alternative notation for the Galerkin method 

𝑤𝑗 = 𝜙𝑗 

 

< Ԑ𝐼 , 𝜙𝑗 > = 0          𝑗 = 1, 2, … , 𝑁 

⇒ 

∫(𝐿(𝑢) − 𝑝)𝜙𝑗𝑑𝑉 = 0          𝑗 = 1, 2, … , 𝑁

𝑉

 

 Now let’s define: 

𝛿𝑢 = 𝛿𝛼1𝜙𝑖 + 𝛿𝛼2𝜙3 + ⋯+ 𝛿𝛼𝑁𝜙𝑁 

 This is a notational change (often used with the Galerkin method). 𝛿𝛼1, 𝛿𝛼2 …𝛿𝛼𝑁 are 

arbitrary coefficients. Since 𝜙𝑗 are linearly independent functions, the error statement may 

now be written as: 

∫(𝐿(𝑢

𝑉

) − 𝑝)𝛿𝑢𝑑𝑉 = 0 

 for arbitrary 𝛿𝛼𝑖 
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 The previous expression produces N equations since 𝜙𝑗 are linearly independent functions. 

Since the coefficients 𝛿𝛼𝑗 are arbitrary, we can select them such that: 

𝛿𝑢1 = 1, 𝛿𝑢2 = 0, 𝛿𝑢3 = 0 

𝛿𝑢1 = 0, 𝛿𝑢2 = 1, 𝛿𝑢3 = 0 

 This leads us directly back to our first statement: 

< Ԑ𝐼 , 𝜙𝑗 > = 0          𝑗 = 1,𝑁 
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4. Subdomain Method 

 Divide the domain V and N smaller domains and select the weighting functions as: 

𝑤𝑖 = (
1  𝑥  𝑖𝑛  𝑉𝑖           

0 𝑥  𝑛𝑜𝑡 𝑖𝑛  𝑉𝑖
 

Thus this method integrates the residual error over each subdomain and sets it equal to zero. 
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5. Method of Moments 

Select 

𝑤𝑖 = 𝑥𝑖−1, 𝑖 = 1, … ,𝑁 

 

 Thus the method applies the series 1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝑁−1 as weighting functions. Thus we 

compute higher order moments of the residual and force them to zero. 
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6. Least Squares Collocation 

 For conventional Collocation, the number of collocation points equals the number of 

unknown 𝛼𝑖’s. 

 We extend the method to treat more collocation points than unknowns. Therefore the error 

is evaluated M > N points: 

Ԑ𝐼 = 𝐿(𝑢𝑎𝑝𝑝) − 𝑝(𝑥) at M > N points 

 Now sum Ԑ𝐼
2 at these M different points: 

 

𝐹 = < {𝐿(𝑢) − 𝑝}2, 𝛿(𝑥 − 𝑥𝑚) >           𝑚 = 1,… ,𝑀  


